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Abstract. A standard quadratic optimization problem (StQP) consists of finding the largest or

smallest value of a (possibly indefinite) quadratic form over the standard simplex which is the
intersection of a hyperplane with the positive orthant. This NP-hard problem has several
immediate real-world applications like the Maximum-Clique Problem, and it also occurs in a

natural way as a subproblem in quadratic programming with linear constraints. To get rid of
the (sign) constraints, we propose a quartic reformulation of StQPs, which is a special case
(degree four) of a homogeneous program over the unit sphere. It turns out that while KKT

points are not exactly corresponding to each other, there is a one-to-one correspondence
between feasible points of the StQP satisfying second-order necessary optimality conditions, to
the counterparts in the quartic homogeneous formulation. We supplement this study by
showing how exact penalty approaches can be used for finding local solutions satisfying

second-order necessary optimality conditions to the quartic problem: we show that the level
sets of the penalty function are bounded for a finite value of the penalty parameter which can
be fixed in advance, thus establishing exact equivalence of the constrained quartic problem

with the unconstrained penalized version.

Key words: exact penalization, max clique, merit function, second-order optimality condi-
tions, standard quadratic optimization

1. Introduction and Preliminaries

1.1. STANDARD QUADRATIC OPTIMIZATION PROBLEMS (StQPs)

A standard quadratic optimization problem (StQP) consists of finding the
largest or smallest value of a (possibly indefinite) quadratic form over the
standard simplex which is the intersection of a hyperplane with the positive
orthant. This NP-hard problem has several immediate realworld applica-
tions like the Maximum-Clique Problem, and it also occurs in a natural
way as a subproblem in quadratic programming with linear constraints.
For more details, we refer to [5] and [6].
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We consider the standard quadratic optimization problem of the form

minfuðyÞ ¼ 1

2
y>Ay : y 2 Dg ð1Þ

where D denotes the standard simplex in n-dimensional Euclidean space
R

n, namely

D ¼ fy 2 R
n : e>y ¼ 1; yP 0g;

and A ¼ ½aij� 2 R
n�n is a symmetric n� n matrix; e is the n-vector of all

ones and y> denotes the transposed vector while I denotes the n� n iden-
tity matrix.
Since the constraints are linear, the constraint qualifications are met and

the first-order necessary optimality conditions (KTS) for a feasible point �y
to be a local solution of problem (1) require that a scalar �k exists such that

ðA�yÞi þ �k ¼ 0 for i : �yi > 0,
ðA�yÞi þ �kP 0 for i : �yi ¼ 0.

�
ð2Þ

From (2) we get also that �k ¼ ��y>A�y ¼ �2uð�yÞ. Hence the Lagrange mul-
tiplier is uniquely determined by �y.
In the sequel, we will invoke (weak) second-order necessary optimality

conditions (WSC) (cf. e.g., [15], p. 61). They require in addition to (2) that

z>AzP0 forall z2Zð�yÞ¼ z2Rn :
X
i2Ið�yÞ

zi¼0; and zi¼0 forall i 62Ið�yÞ

8<
:

9=
;
ð3Þ

where Ið�yÞ denotes the ‘‘inactive’’ variables, namely

Ið�yÞ ¼ fi : �yi > 0g:

2. Quartic Formulation of StQPs

2.1. OPTIMALITY CONDITIONS

To get rid of the sign constraints yi P 0, we replace the variables yi with
xi, putting yi ¼ x2i . Then the condition e>y ¼ 1 reads kxk2 ¼ 1, where k � k
denotes the Euclidean norm. So we arrive at the ball-constrained quartic
optimization problem (BQP)

min fðxÞ ¼ 1

2
x>XAXx : kxk2 ¼ 1

� �
ð4Þ
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where we denote by X the diagonal matrix with elements xi. We note that

rfðxÞ ¼ 2XAXx and r2fðxÞ ¼ 4XAXþ 2 diagfAXxg: ð5Þ
Since there is only the norm constraint, any kind of constraint qualifica-

tion is satisfied. The first order necessary optimality conditions (KTQ) for
a feasible point �x to be a local solution of problem (4) require that a scalar
�l exists such that rfð�xÞ þ 2�l�x ¼ 0, that is:

�XA �X�xþ �l�x ¼ 0: ð6Þ
Furthermore, taking into account that by (5) we can write r2fð�xÞ�x ¼

6 �XA �X�x we can re-write condition (6) as

ðr2fð�xÞ þ 6�lIÞ�x ¼ 0: ð7Þ
The second-order necessary optimality conditions (SNC) for problem (4)
involve the Hessian of the Lagrangian,

H�lð�xÞ ¼ r2fð�xÞ þ 2�lI ¼ 2½2 �XAXþ diagfA �X�xg þ �lI� ð8Þ
and require in addition to (7) that

z>H�lð�xÞzP 0 for all z ? �x; i.e:; z>�x ¼ 0: ð9Þ
Problem (4) is a homogeneous problem to minimize a fourth-order poly-

nomial over the unit sphere. To invoke some generalized trust-region
method, we may extend this problem to the unit ball rather than to the
sphere, replacing the constraint kxk2 ¼ 1 with the inequality kxk2 O 1.
Now, if the objective is non-negative for all x, then of course x ¼ 0 is the
global solution over the ball. But in the opposite case we always can be
sure that there is a solution for the trust region problem which lies on the
sphere, and hence is also a solution to the problem over the sphere. More-
over, every local solution �x to the trust region problem with k�xk < 1 neces-
sarily satisfies fð�xÞ ¼ 0, which immediately follows by considering the ray
through �x emanating at the origin. By complementary slackness, then, the
Lagrange multiplier �l must be also zero, of course.
The next subsection is devoted to a discussion of the difference between

homogeneous optimization over the ball and the sphere, in particular for
second-order necessary conditions involving H�lð�xÞ.

2.2. HOMOGENEOUS OPTIMIZATION OVER THE BALL AND THE SPHERE

Consider a general objective function fðxÞ which is homogeneous of degree
k and the problem minffðxÞ : kxk2 ¼ 1g (later, we shall specialize to our
case k ¼ 4). By Euler’s identity, we have

rfðxÞ>x ¼ kfðxÞ and r2fðxÞx ¼ ðk� 1ÞrfðxÞ: ð10Þ
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Now, the KKT condition rfð�xÞ þ 2�l�x ¼ 0 implies that the Lagrange
multiplier �l is uniquely determined via (10), namely using kfð�xÞ ¼
�x>rfð�xÞ ¼ �2�lk�xk2 ¼ �2�l. This also holds for the ball-constrained prob-
lem, since �l ¼ fð�xÞ ¼ 0 if k�xk < 1. Furthermore, using again (10),
rfð�xÞ þ 2�l�x ¼ 0 can be rewritten as

½H�lð�xÞþ2ðk�2Þ�lI��x¼ ½r2fð�xÞþ2ðk�1Þ�lI��x¼ðk�1Þ½rfð�xÞþ2�l�x� ¼ 0:

ð11Þ

Hence, unless �x ¼ 0, the matrixH�lð�xÞ þ 2ðk� 2Þ�lI is singular. In [1], a sec-
ond-order condition has been proven for the inequality constrained version
of the homogeneous problem which establishes positive-semidefiniteness of
this matrix. For reasons which will become obvious soon, we include a proof,
writing here and in the sequel A � 0 to signify that A is positive-semidefinite.

THEOREM 1. Let �x be a local minimizer for problem minffðxÞ : kxk2 O 1g,
where f is homogeneous of degree k. Then necessarily fð�xÞO 0, and for
�l ¼ � k

2 fð�xÞP 0 we have

H�lð�xÞ þ 2ðk� 2Þ�lI ¼ r2fð�xÞ þ 2ðk� 1Þ�lI � 0: ð12Þ

Proof. The assertion is obviously true if k�xk < 1, taking into account the
remarks concluding the previous subsection. So without loss of generality
we may (and do) assume that k�xk ¼ 1, and of course �l P 0. Hence from
the previous arguments fð�xÞ ¼ � 2

k
�l O 0. To establish (12), note that (11)

can also be written as

H�lð�xÞ�x ¼ ðk� 1Þrfð�xÞ þ 2�l�x ¼ �2�lðk� 2Þ�x; ð13Þ

where in the last equality we use the KKT condition rfð�xÞ ¼ �2�l�x. Next,
let w 2 R

n be arbitrary and consider a point z ¼ w� a�x with a such that
�x>z ¼ 0, namely a ¼ w>�x. Now, if k�xk ¼ 1, then the standard (SNC) for
the ball-constrained problem coincides with (9). Expanding and collecting
terms on the right-hand side we obtain, using (13),

0O z>H�lð�xÞz ¼ ðw� a�xÞ>H�lð�xÞðw� a�xÞ
¼ w>H�lð�xÞw� 2aw>H�lð�xÞ�xþ a2�x>H�lð�xÞ�x
¼ w>H�lð�xÞw� 2aw>ð�2�lðk� 2Þ�xÞ � a22�lðk� 2Þk�xk2

¼ w>H�lð�xÞwþ 4�lðk� 2Þa2 � 2�lðk� 2Þa2

¼ w>H�lð�xÞwþ 2�lðk� 2Þa2:

ð14Þ

Hence we get, using a2 O kwk2 and �lP 0,
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0Ow>H�lð�xÞwþ 2�lðk� 2Þkwk2 ¼ w>½r2fð�xÞ þ 2ðk� 1Þ�lI�w for all w 2 Rn;

which shows the assertion. u

Note that in the last implication the fact that �l P 0 is essential. Hence
the same arguments cannot be repeated in the equality constrained case
unless some additional assumptions on fðxÞ are made.
For the special case of quartic problem (4) we obtain

COROLLARY 2. Let �x be a local minimizer for problem minffðxÞ :
kxk2 O 1g, where f is as in (4). Then for �l ¼ �2fð�xÞP 0 we have
ð2 �XA �Xþ diagfA �X�xgþ 3�lIÞ�x ¼ 0 and �lðkxk2 � 1Þ ¼ 0 as well as

2 �XA �Xþ diagfA �X�xg þ 3�lI � 0: ð15Þ

Proof. Follows from Theorem 1 by noting k ¼ 4 and recalling (5) holds in
the quartic case. u

However, by careful inspection of the proof of Theorem 1, we can
sharpen the second-order necessary conditions by [1], now using the posi-
tive-semidefiniteness of a rank-one modification of H�lð�xÞ (rather than per-
turbing it by the identity matrix), arriving at the following result that holds
for general homogeneous functions of degree k. Note that the Lagrange
multiplier �l can now be negative.

THEOREM 3. Let �x be a local minimizer of a homogeneous objective f (of
degree k) over the unit sphere. Then for �l ¼ � k

2 fð�xÞ 2 R we have
rfð�xÞ þ 2�l�x ¼ 0 and

H�lð�xÞ þ 2ðk� 2Þ�l�x�x> ¼ r2fð�xÞ þ 2�lIþ 2�lðk� 2Þ�x�x> � 0: ð16Þ

Proof. By the same arguments that lead to the proof of Theorem 1, we
arrive at (14). But this inequality can be rewritten as

0Ow>½H�lð�xÞ þ 2ðk� 2Þ�l�x�x>�w;

recalling the definition of a ¼ w>�x. Thus the assertion. u

In the case of the quartic homogeneous problem we finally arrive at:

COROLLARY 4. Let �x be a local minimizer for problem (4). Then for
�l ¼ �2fð�xÞ 2 R we have �XA �X�xþ �l�x ¼ 0 and

2 �XA �Xþ diagfA �X�xg þ �lðIþ 2�x�x>Þ � 0: ð17Þ
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Returning shortly to the general case, it is straightforward to see that
(16) implies (12), if �l P 0. Indeed, since k�xkO 1, we have I� �x�x> � 0.
Since both are necessary conditions, Theorem 3 is a sharpening of Theo-
rem 1. The next section contains an example where (12) is fulfilled while
(16) is violated, although �l > 0.

3. BQPs versus StQPs: Relationship among Solutions

3.1. TRANSFORMING OPTIMALITY CONDITIONS

Let us consider the transformation y ¼ TðxÞ with yi ¼ x2i . First we observe
that for any vector x it results fðxÞ ¼ fðjxjÞ where by jxj we denote the vec-
tor whose components are jxij. Also, both �x and j�xj satisfy the same first
and second-order optimality conditions. Hence without loss of generality
we can assume in the following that xP 0. We denote by x ¼ T�1ðyÞ the
(partial) inverse transformation, namely xi ¼ þ

ffiffiffiffiffiffiffi
jyij

p
.

THEOREM 5. A point �y is a local minimizer of problem (1) if and only if
�x ¼ T�1ð�yÞ is a local minimizer of problem (4). Further, a point �y is a global
minimizer of problem (1) if and only if �x ¼ T�1ð�yÞ is a global minimizer of
problem (4).

Proof. The transformation y ¼ TðxÞ and its (partial) inverse x ¼ T�1ðyÞ are
well-defined and continuous. Moreover we have fðxÞ ¼ uðTðxÞÞ as well as
fðT�1ðyÞÞ ¼ uðyÞ and feasible points of problem (1) correspond to feasible
points of problem (4). Hence the result. u

Unfortunately, the same does not hold true for KKT points. Only one
direction of the implications is still valid:

THEOREM 6. Let �y be a KKT point of problem (1), then �x ¼ Tð�yÞ is a
KKT point of problem (4).

Proof. The proof follows easily by observing that we can re-write equation
(6) coordinate-wise as

�xi½ðA�yÞi þ �l� ¼ 0;

which is implied by (2). u

The converse is not true as shown in Example 1 of the following subsec-
tion. The loss of correspondence between KKT points implies that
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spurious KKT points can be created in passing from problem (1) to prob-
lem (4). However, the reverse correspondence can be proved for refined
KKT points of problem (4), namely those points that satisfy also the sec-
ond-order necessary conditions proposed in the previous section:

THEOREM 7. Let �y ¼ Tð�xÞ 2 D with �xP 0. Then the following statements
are equivalent:
(a) �y is a KKT point for problem (1) which satisfies the second-order

necessary condition (3);
(b) �y is a KKT point for problem (1), and the second-order necessary

conditions (17) are satisfied for �x and the problem (4);
(c) �x is a KKT point of problem (4) which satisfies the second-order

necessary conditions (17);
(d) �x is a KKT point of problem (4), and the second-order necessary

conditions (3) are satisfied for �y and the problem (1).

Proof. First we prove that (a) implies (b). To this end, we invoke Theorem
6, whence �x satisfies the KKT conditions (6) (KTQ) for problem (4). For
any d 2 R

n we can define the vector z with components

zi ¼
0 if �xi ¼ 0,
�xidi � ð�x>dÞ�xi if �xi > 0.

�

Hence, taking into account that �x is feasible, we haveX
i2Ið�yÞ

zi ¼
X
i: �xi>0

�xidi � ð�x>dÞ
X
i: �xi>0

�xi ¼ 0;

where, as usual, Ið�yÞ ¼ fi : �yi > 0g.
Hence from (3) (WSC) we infer

0O z>Az ¼ ðd� a�xÞ> �XA �Xðd� a�xÞ
with a ¼ �x>d. Expanding terms we get

0O d> �XA �Xd� 2a�x> �XA �Xdþ a2�x> �XA �X�x:

Recalling that �XA �X�x ¼ ��l�x we can write

0O d> �XA �Xd� a2�lkxk2 þ 2a�lð�x>dÞ ¼ d>ð �XA �Xþ l�x�x>Þd:

Recalling also that A �X�xþ �leP 0 which means diagfA �X�xg þ �lI � 0 we get
the desired result. (b)) (c) is an immediate consequence of Theorem 6.
To establish (c)) (d), we consider a point z ? �x and put d ¼ �Xz. Then

d 2 Zð�yÞ since i62Ið�yÞ implies �xi ¼ 0 and thus di ¼ 0 and, furthermore,X
i2Ið�yÞ

di ¼
X
i2Ið�yÞ

zi�xi ¼ z>�x ¼ 0:
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Hence we obtain from (3)

0O d>Ad ¼ z> �XA �Xz;

but of course also, as above, diagfA �X�xg þ �lI � 0, which entails
z>H�lð�xÞzP 0, as required. Finally, to prove (d)) (a), we have to show
next that under the assumption (d), the point �y ¼ Tð�xÞ ¼ �X�x 2 D is a KKT
point of problem (1). Let us write the first condition (6) coordinate-wise:

�xiððA�yÞi þ �lÞ ¼ 0:

Now �xi > 0 if and only if �yi > 0, in which case we infer ðA�yÞi þ �l ¼ 0.
Else, i.e., if �xi ¼ 0, we use the second condition of (17). Then choose
z ¼ ei ? �x, to get coordinate-wise

0O e>i ½2 �XA �X�ei þ diagfA�ygii þ �l ¼ 0þ ½A�y�i þ �l;

and (2) (KTS) is satisfied for �k ¼ �l.
Now let us prove that the point �y satisfies also the second-order condition

(3). Let d be any point in Zð�yÞ. Let us define the vector z with components:

zi ¼
0 if �xi ¼ 0,
di
�xi

if �xi > 0.

�

Then we get �Xz ¼ d and furthermore, since di ¼ 0 for all i62Ið�yÞ by defini-
tion,

z>�x> ¼
X
i: �yi>0

zi�xi ¼
X
i: �xi>0

�xi
di
�xi
¼
X
i2Ið�yÞ

di ¼ 0:

But then we also know, by (17),

z>½2 �XA �Xþ diagfA �X�xg þ �lðIþ 2 �X�x>Þ�zP 0:

Since we have fi : �xi ¼ 0g ¼ fi : �yi ¼ 0g � fi : di ¼ 0g, we obtain from

z>diagfA �X�xgz ¼
X
i2Ið�yÞ

z2i ½A �X�x�i ¼ ��lkzk2

and thus we can write

0O z>½2 �XA �Xþ diagfA �X�xg þ �lðIþ 2 �X�x>Þ�z ¼ 2d>Ad:

Hence (3) holds. u

As already observed at the end of the last section, condition (16) implies
(12), if �l P 0. The converse, however, does not hold, even if in addition (6)
is satisfied. See, again, Example 1 below.
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3.2. COUNTEREXAMPLES

EXAMPLE 1. Let us consider the following problem

A ¼
�1 �1 �2
�1 �1 �2
�2 �2 �2

2
4

3
5

and the point �y ¼ 1
2 ;

1
2 ; 0

� �>
, which is not a KKT point for problem (1).

Indeed A�y ¼ � 1
2 ;� 1

2 ;�1
� �>

which violates (2) as �k ¼ 1
2 < 1. On the other

hand, consider the transformed point �x ¼ 1ffiffi
2
p ; 1ffiffi

2
p ; 0

h i>
and the transformed

problem (4). Thus

�XA �X ¼ � 1

2

1 1 0
1 1 0
0 0 0

2
4

3
5:

Now the KKT conditions require �XA �X�xþ �l�x ¼ 0 for some �l, i.e.,
�1=

ffiffiffi
2
p
þ �l=

ffiffiffi
2
p
¼ 0 and this holds for �l ¼ 1.

We already saw that (6) is satisfied although (2) is violated. In other
words, �x is a KKT point for problem (4) while �y is none for problem (1).
Furthermore,

2 �XA �Xþ diagfA�yg þ 3�lI ¼ 1

2

3 �2 0
�2 3 0
0 0 2

2
4

3
5 � 0;

while, of course, the sharper second-order condition (16) is violated (other-
wise, Theorem 7 would yield (2), which as shown is absurd).

The preceding example already exhibits the weakness of (12) for our pur-
poses. Still, one could hope that the stronger condition (2), together with
(12), implies (16) or equivalent conditions from Theorem 7. The following
example shows that this hope, too, is in vain:

EXAMPLE 2. For any nP 2, consider A ¼ �I and �y ¼ 1
n e with �x ¼ 1ffiffi

n
p e.

Then both KKT conditions (2) and (6) are satisfied as Ið�yÞ ¼ f1; . . . ; ng is
maximal. Moreover, 2 �XA �Xþ diagfA�yg þ 3�lI ¼ 0 � 0 and hence (12)
holds. On the other hand, Zð�yÞ ¼ e? 6¼ f0g so that (3) cannot hold.

We proceed with a third example which shows that, despite the weakness
of (12), there are still KKT points which violate even this condition:
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EXAMPLE 3. Let

A ¼
�2 3

3 �8

� �
and �y ¼

11=16

5=16

� �
with �x ¼

ffiffiffiffiffi
11
p

=4ffiffiffi
5
p

=4

" #
:

As A�y ¼ � 7
16 ½1; 1�

>, the KKT condition (2) holds as in Example 2, with
�l ¼ 7

16 > 0. However, here 2 �XA �Xþ diagfA�yg þ 3�lI ¼ 2½ �XA �Xþ 2�lI� is
indefinite as

�XA �Xþ 2�lI ¼ 1

16

�8 3
ffiffiffiffiffi
55
p

3
ffiffiffiffiffi
55
p

�26

" #
:

Let us conclude this subsection by a last example showing that the second-
order condition (3) is indeed only necessary but not sufficient for local
optimality. This may be surprising at first sight as the objective in (1) is
quadratic. The reason for this gap is that copositivity has to replace defi-
niteness conditions in order to make second-order conditions tight for qua-
dratic problems. For details, we refer to [3].

EXAMPLE 4. Let

A ¼
0 0 1
0 0 �1
1 �1 0

2
4

3
5 and �y ¼

1=2
1=2
0

2
4

3
5:

Then Zð�yÞ ¼ f½v;�v; 0�> : v 2 Rg, and hence condition (3) holds: indeed,
z>Az ¼ 0 for all z 2 Zð�yÞ. On the other hand, we have y>Ay ¼2y3ðy1 � y2Þ
for all y 2 D, so that �y with its objective value of zero cannot be a local
minimizer as the objective function can change sign arbitrarily close to �y.

4. Finding a Local Solution of the BQP

Theorem 7 states the correspondence among points satisfying the second
order necessary conditions of problems (3) and (4). Hence, if we want to
use the quartic formulation to obtain a solution of the StQP, we need an
algorithm that converges to second-order KKT points of problem (4).
In the constrained optimization field, very few algorithms have been pro-

posed that achieve convergence to points satisfying second order necessary
conditions (see e.g. [9, 12] and references therein). However, up to the
authors’ knowledge, there are no available implementations of such algo-
rithms. Furthermore, the special structure of the constraint of problem (4)
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allows us to define ‘‘ad-hoc’’ algorithms that may be simplified with respect
to those for more general problems.
In this section we propose an approach based on the use of a continu-

ously differentiable exact penalty function, which, following the same lines
of [18, 19], has the distinguishing feature of exploiting the particular struc-
ture of the objective function and of the constraint. By means of the
penalty function P, the problem of locating a constrained global minimizer
of problem (4) is recast as the problem of locating an unconstrained global
minimizer of P. This allows us to use an unconstrained method for the
minimization of the penalty function P, which makes life simpler. Indeed,
in the unconstrained optimization field there are different approaches that
allows to find points satisfying the second order necessary conditions for
unconstrained minimization (see e.g. [20, 14]) and software is available,
too.
This exact penalty approach can be used for finding local solutions to

the quartic problem, because it is possible to show that the level sets of P
are bounded for a finite value of the penalty parameter which can be fixed
in advance. Thus exact equivalence of the constrained quartic problem with
the unconstrained penalized version can be established in the sense that
first- and second order optimality conditions can be related to each other
in an exact way.
One may wonder why we go through the quartic formulation (4) and

not apply the penalty transformation directly to the StQP (3). Actually,
although it is possible to define a continuously differentiable exact penalty
function for the StQP itself [10, 13], and although the feasible set has a
special structure, their expression involves the presence of barrier terms to
avoid unboundedness of the level sets so that theoretical study and also
practical implementation of minimization algorithms are more compli-
cated.
In the next subsection we describe the structure of the penalty function

and then we discuss more in details its algorithmic use.

4.1. A CONTINUOUSLY DIFFERENTIABLE PENALTY FUNCTION

In this subsection, we show that problem (4) is equivalent to the uncon-
strained minimization of a twice continuously differentiable merit function.
The transformation of a constrained optimization problem into an uncon-
strained one by means of a continuously differentiable exact penalty func-
tion has been addressed in many papers (see for example [2, 10] and
references therein). Almost all the expressions of continuously differentiable
penalty function are derived from the original augmented Lagrangean
function proposed by Hestenes–Powell–Rockafellar [24, 16] by substituting
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the multiplier vector by a suitable multiplier function. Indeed the proper-
ties and the expression of the penalty function depend on the particular
choice of the multiplier function. In the literature different multiplier func-
tions have been proposed (see e.g. [2, 10] and references therein) that, how-
ever, require assumptions on the constraints (such as linear independence).
In particular, applying the standard definition we should have lðxÞ ¼
�2 fðxÞ

kxk which is not defined in the origin.

However, following the guidelines of [18, 19] we define here a multiplier
function lðxÞ :Rn ! R, which yields an estimate of the multiplier associ-
ated to problem (4) as a function of the variables x, that fully exploits the
particular structure of the constraint, namely

lðxÞ ¼ �x>XAXx ¼ �2fðxÞ: ð18Þ
We note that the expression (18) equals the standard definition of lðxÞ
only on the feasible set. It is easily seen that lðxÞ given by (18) is twice
continuously differentiable on R

n with derivatives

rlðxÞ ¼ �2rfðxÞ ¼ �4XAXx and

r2lðxÞ ¼ �2r2fðxÞ ¼ �4ð2XAXþ diagfAXxgÞ:
The main property of the multiplier function is summarized in the follow-
ing proposition.

PROPOSITION 8. If ð�x; �lÞ is a KKT point for problem (4) then we have
lð�xÞ ¼ �l.

Now following a standard approach [19] for the definition of a penalty
function, we obtain the following expression for Pðx; eÞ:

Pðx; eÞ ¼ fðxÞ þ 1

e
ðkxk2 � 1Þ2 þ lðxÞðkxk2 � 1Þ;

which, using the expression (18), becomes

Pðx; eÞ ¼ fðxÞð3� 2kxk2Þ þ 1

e
ðkxk2 � 1Þ2: ð19Þ

Usually, exactness results for the penalty functions are stated for sufficiently
small values of the penalty parameter, that has to be adjusted iteratively
during the minimization process ([13] and references therein). However, due
to the special structure of the objective function and constraint, it is possi-
ble to define a priori the threshold value �e (depending on the problem data
A) for the penalty parameter e in the penalty function Pðx; eÞ:

�e ¼ min
1

2
kAk ð1þ 3H4Þ
ðH2 � 1Þ2

;
1

2kAk
ðc2 � 1Þ2

c4
;

2H2

3kAkc4

( )
; ð20Þ
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where H 2 ð0; 1Þ and c > 1 are user-selected constants (see Theorem 9
below).
It easily seen that Pðx; eÞ is twice continuously differentiable on the whole

space R
n, with the gradient and Hessian given by

rPðx; eÞ ¼ rfðxÞð3� 2kxk2Þ � 4fðxÞxþ 4

e
ðkxk2 � 1Þx ð21Þ

r2Pðx; eÞ ¼ r2fðxÞð3� 2kxk2Þ � 4fðxÞI� 4½rfðxÞx> þ xrfðxÞ>�

þ 8

e
xx> þ 4

e
ðkxk2 � 1ÞI: ð22Þ

Moreover, for every feasible x we have

Pðx; eÞ ¼ fðxÞ: ð23Þ

Furthermore, the penalty function Pðx; eÞ differs from other continuously
differentiable exact penalty functions also in the important fact that it
admits compact level sets, without the need of barrier terms. This implies
the existence of a global minimizer and also the satisfaction of a minimal
assumption in unconstrained optimization which implies boundedness of
the sequence generated by an unconstrained method.
In particular, given any arbitrary but fixed point x0 2 R

n, let us define
the level set

L0 ¼ fx 2 R
n : Pðx; eÞOPðx0; eÞg:

Then we have the following result.

THEOREM 9. Let x0 2 R
n be a point such that kx0k ¼ 1: If H 2 ð0; 1Þ and

c > 1 are the constants appearing in (20), then for 0 < e < �e

L0 � fx 2 R
n : HO kxkO cg:

Proof. Denote by kAk ¼ supkykO1 kAyk the usual operator norm. Then it is
straightforward to see that for any x 2 R

n we have kXkOkxk, and hence
kfðxÞkO 1

2 kAkkxk
4 holds. By consequence, we make use of the inequalities:

Pðx0; eÞ ¼ fðx0Þ ¼ 1

2
x0
>
X0AX0x0 O

1

2
kAk kx0k4 ¼ 1

2
kAk ð24Þ

and, because of Pðx; eÞP � 1
2 kAk kxk

4ð3� 2kxk2Þ þ 1
e ðkxk

2 � 1Þ2 ¼
� 3

2 kAk kxk
4þ kAk kxk6þ 1

e ðkxk
2 � 1Þ2,

Pðx; eÞP � 3

2
kAk kxk4 þ 1

e
ð1� kxk2Þ2: ð25Þ
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First we prove that kxk < H implies Pðx; eÞ > Pðx0; eÞ. Indeed, since
kxk < H < 1, we can deduce from (25)

Pðx; eÞP � 3

2
kAkH4 þ 1

e
ðH2 � 1Þ2: ð26Þ

On the other hand, e O �e < 1
2 kAk

ð1þ3H4Þ
ðH2�1Þ2 implies 1

e ðH
2 � 1Þ2 >

1
2 kAkð1þ 3H4Þ, yielding

1

e
ðH2 � 1Þ2 � 3

2
kAkH4 >

1

2
kAk:

The result now follows from (26) and (24).
Now we prove that kxk > c implies Pðx; eÞ > Pðx0; eÞ. If kxk > c > 1 we

can write

Pðx; eÞP� 3

2
kAkkxk4þkxk

4

e
1� 1

kxk2

 !2

Pkxk4 �3

2
kAkþ 1

ec4
ðc2� 1Þ2

� �

ð27Þ
and similarly

Pðx0; eÞO 1

2
kAkO 1

2
kAkc O

1

2
kAkkxk4: ð28Þ

Hence we get from e < �e 1
2kAk

ðc2�1Þ2
c4 the relation 1

ec4 ðc
2 � 1Þ2 > 2kAk and

finally

� 3

2
kAk þ 1

ec4
ðc2 � 1Þ2 > 1

2
kAk;

which via (28) and (27) establishes the result. u

The next four theorems establish the main exactness properties of the
penalty function Pðx; eÞ that we need for the purpose of solving StQP.

THEOREM 10. (First-order exactness property). For 0 < e < �e as in (20), a
point �x 2 L0 is a stationary point of Pðx; eÞ if and only if ð�x;lð�xÞÞ is a KKT
point for problem (4).

Proof. ð(Þ Since �x is a KKT point for (4), it is in particular feasible, so
that we have, by the first equation in (21), rPð�x; eÞ ¼ rfð�xÞ þ 2lð�xÞ�x ¼ 0.
ð)Þ If rPð�x; eÞ ¼ 0 then, by (21) and using x>rfðxÞ ¼ 4fðxÞ;

0¼ex>rPðx;eÞ¼ex>rfðxÞ½1�2ðkxk2�1Þ��4efðxÞkxk2þ4ðkxk2�1Þkxk2

¼ðkxk2�1Þð4kxk2�12efðxÞÞ
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We can write for �x 2 L0

4k�xk2 � 12efð�xÞP4k�xk2 � 6ekAkk�xk4P4H2 � 6ekAkc4:

Since e < 4H2

6kAkc4 we get that the term 4k�xk2 � 12efð�xÞ > 0: Hence rPð�x; eÞ ¼

0 implies k�xk2 ¼ 1 and again rfð�xÞ þ 2�l�x ¼ rPð�x; eÞ ¼ 0 for �l ¼ lð�xÞ ¼

�2fð�xÞ. u

It is easy to show that there is a one-to-one correspondence between glo-
bal minimizers of problem (4) and global minimizers of the penalty func-
tion P. The proof is quite standard in penalty approach and we report it
here for sake of completeness.

THEOREM 11. (Correspondence of global minimizers). For 0 < e < �e as in
(20), every global minimizer of problem (4) is a global minimizer of Pðx; eÞ
and conversely.

Proof. By Theorem 9, the penalty function Pð:; eÞ admits a global minimizer
x̂, which is obviously a stationary point of Pð:; eÞ and hence, by Theorem
10, a KKT point of Problem (4), so that we have:

Pðx̂; eÞ ¼ fðx̂Þ:

On the other hand, if x� is a global minimizer of problem (4), it is also a
KKT point and hence by the preceding proposition it is a stationary point
of Pð:; eÞ which implies again that Pðx�:; eÞ ¼ fðx�Þ. Now, we proceed by
contradiction. Assume that a global minimizer x̂ of Pð:; eÞ is not a global
minimizer of problem (4), then there should exists a point x�, global mini-
mizer of problem (4), such that

Pðx̂; eÞ ¼ fðx̂Þ > fðx�Þ ¼ Pðx�; eÞ

that contradicts the assumption that x̂ is a global minimizer of Pðx:; eÞ.
The converse is true by analogous considerations. u

Regarding local minimizers, we have the following result, whose proof is
standard in penalty approach and is reported only for sake of completeness.

THEOREM 12. (Correspondence of local minimizers). For 0 < e < �e as in
(20), let �x 2 L0 be a local minimizer of Pðx; eÞ. Then �x is a local solution to
problem (4), and lð�xÞ is the associated KKT multiplier.
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Proof. We first recall that if �x is a local minimizer of Pðx; eÞ then the pair
ð�x;lð�xÞÞ satisfies the KKT conditions for problem (4) and we have
Pð�x; eÞ ¼ fð�xÞ. Since �x is a local minimizer of P, there exists a neighbor-
hood X of �x such that

fð�xÞ ¼ Pð�x; eÞOPðx; eÞ for all x 2 X :

Since for every feasible point x we have Pðx; eÞ ¼ fðxÞ, we can also write

fð�xÞOPðx; eÞ ¼ fðxÞ for all x 2 X \ F ð29Þ

and hence �x is a local minimizer for problem (4). (

As we use the exact penalty approach to locate a solution of the StQP,
we need also to exploit the correspondence among points satisfying sec-
ond-order necessary conditions. In particular, the following result is
needed.

THEOREM 13. (Second-order exactness property). For 0 < e < �e as in
(20), let �x 2 L0 be a stationary point of Pðx; eÞ satisfying the standard sec-
ond-order necessary conditions for unconstrained optimality. Then ð�x;lð�xÞÞ
satisfies the second-order necessary conditions for problem (4).

Proof. From Theorem 10 we know that first order conditions hold. Hence
we have that k�xk ¼ 1 and that rfð�xÞ þ 2�l�x ¼ 0: Now, recalling (22) we
obtain

r2Pð�x; eÞ ¼ r2fð�xÞ � 4fð�xÞI� 4½rfð�xÞ�x> þ �xrfð�xÞ>� þ 8

e
�x�x>

¼ r2fð�xÞ þ 2�lIþ 8
1

e
þ 2�l

� 	
�x�x>;

since rfð�xÞ ¼ �2�l�x by the KKT conditions. Next, for every d such that
d>�x ¼ 0 we get

0O d>r2Pð�x; eÞd ¼ d>ðr2fð�xÞ þ 2�lIÞd

and the proof is completed. u

4.2. ALGORITHMIC ASPECTS

On the basis of the definition of the penalty function above, we have recast
the problem of locating a constrained solution of problem (4) as the prob-
lem of locating an unconstrained solution of P. As we mentioned at the
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beginning of this section, this allows us to use an unconstrained method
for the minimization of the penalty function P converging to points satisfy-
ing the second order necessary conditions. Indeed, by Theorem 13 station-
ary points of P satisfying the second order necessary conditions, are points
satisfying the second-order necessary conditions (17) for problem (4)
which, in turn, by Theorem 7 are points satisfying the second-order neces-
sary condition (3) for the StQP (1).
We observe that given a feasible starting point x0, any of these algo-

rithms is able to locate a KKT point with a lower value of the objective
function. In fact, any unconstrained algorithm obtains a stationary point �x
for P such that

Pð�x; eÞ < Pðx0; eÞ:

Then, Theorem 10 ensures that �x is a KKT point of problem (4). On the
other hand, if x0 is a feasible point, recalling (23), we get that

fð�xÞ ¼ Pð�x; eÞ < Pðx0; eÞ ¼ fðx0Þ:

In conclusion, by using an unconstrained optimization algorithm, we get a
KKT point �x of problem (4) with a value of the objective function lower
than the value at the starting point x0.
We have performed numerical experiments based on the Penalty trans-

formation of the BQP. We refer to the implementation of the method
based on these successive reformulations as BQP.
As a method for unconstrained minimization of P we have used the cur-

vilinear nonmonotone line search algorithm NMonNC described in [20].
The algorithm generates a sequence fxkg as

xkþ1 ¼ xk þ aksk þ ak
2
dk

where dk is a Newton-type direction, sk is a particular negative curvature
direction which has some resemblance to an eigenvector corresponding to
the smallest eigenvalue of the hessian matrix r2P and ak is a stepsize.
NMonNC uses a Lanczos bases iterative scheme to compute both the direc-
tions sk; dk: It has been proved in [20] to be globally convergent to points
satisfying second order necessary conditions with superlinear rate of con-
vergence.
Of course, we could have also defined ad-hoc algorithms for finding a

local minimizer of problem (4) that exploit its structure (following similar
approaches of [18, 19]). However, this is out of the scope of the paper.
We remark, however, that the BQP method is a local method, in the

sense that it guarantees convergence only to local solutions and there is no
guarantee that the points obtained by the algorithm NMonNC are global
minimizers of Pðx; eÞ and hence of problem (1).
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Hence, if we want to determine a global solution, we ought to include
some global procedure to ‘escape’ from local solutions. However, we have
performed the numerical experiments, reported in the next section, without
any ‘escape step’, namely without implementing any heuristic or global
procedure to ‘escape’ from local-nonglobal points whenever they are found
during the minimization. The only global aspects in the implementation
stays in the fact that we adopt a multi-start approach, namely we perform
many minimization processes starting from different starting point chosen
randomly; then we select the best value obtained.

5. Numerical Experiments

Standard quadratic optimization problems arise in several applications (see
[5] for a full review). We consider a special StQP problem that arises from
a continuous formulation of a classical problem in graph theory, namely
the maximum clique problem.

5.1. THE MAXIMUM CLIQUE PROBLEM (MCP)

Given an undirected graph G ¼ ðV;EÞ with vertex V and edge set
E � V� V , the max clique problem consists on finding a complete sub-
graph of G of maximum cardinality x�.
This problem has many different continuous formulation as a nonconvex

optimization problem. For a survey we refer to [7]. Here we use the contin-
uous formulation given by Bomze [4] as a regularization of the Motzkin–
Straus [22] formulation. In the original Motzkin–Straus formulation, the
value of the maximum clique x� is obtained as ð1� f �Þ�1 where f � denotes
the optimal value of the indefinite quadratic program

max fy>AGy : y 2 Dg;

where AG denotes the adjacency matrix of the graph, namely
aij ¼ 1 if ði; jÞ 2 E and D is the standard simplex in the n-dimensional
Euclidean space. The regularized version of Bomze is obtained by adding
to the objective function the term 1

2 kyk
2, so that the maximum clique prob-

lem can be written as:

max fy> AG þ
1

2
I

� 	
y : y 2 Dg; ð30Þ

an StQP of the type (1) with matrix A ¼ �2ðAG þ 1
2 IÞ.

The regularized version (30) avoids the drawback of the original
Motzkin–Straus formulation of having spurious solutions, namely of solu-
tions that are not in a one-to-one correspondence with solutions of the origi-
nal combinatorial problems. The main result proved in [4] is reported here:
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THEOREM 14. Let G be an undirected graph and consider problem (30).
Then the following assertion are equivalent:
(a) �y is a strict local maximum for problem (30);
(b) �y is a local maximum for problem (30);
(c) �y ¼ 1

�x

P
i2r ei where r is a maximal clique of cardinality �x.

If one of the above conditions (and therefore all) is met, the objective
�y>ðAG þ 1

2 IÞ�y equals the value 1� 1
2 �x.

Assertions (a) and (b) imply that every local solution of (30) is strict, so
that there is no problem in identifying a clique r from �y. Indeed a vertex

i 2 r if and only if �yi > 0 and �x ¼ 1
2 ð1� �fÞ�1. Obviously r� is a maximum

clique of G if and only if x� is the global solution of (30).

5.2. IMPLEMENTATION DETAILS

First we note that in the unconstrained algorithm Lanczos only matrix
times vector products are required, so that in principle the storage of the
adjacency matrix AG is not required. However, since for the problems of
the Dimacs collection AG is given (only the nonzero elements), we store it.
These may increase the cpu time required at each iteration of the NMonNC
method. In NMonNC, we set to 100 the memory for the nonmonotone
scheme and we set to 10 the number of Lanczos basis vectors stored.
To obtain an estimate of the threshold value of e to be used in the pen-

alty function P, we use in (20) the fact that kAkFOkAkO
ffiffiffi
n
p
kAkF where

kAkF ¼
P

i

P
j aij denotes the Frobenius norm of the matrix A; we obtain

the following estimate of the value of the penalty parameter e < �e

min
1

2
kAk ð1þ 3H4Þ
ðH2 � 1Þ2

;
1

2kAk
ðc2 � 1Þ2

c4
;

2H2

3kAkc4

( )

Pmin
1

2
kAkF

ð1þ 3H4Þ
ðH2 � 1Þ2

;
1

2
ffiffiffi
n
p
kAkF

ðc2 � 1Þ2

c4
;

2H2

3
ffiffiffi
n
p
kAkFc4

( )
: ð31Þ

If we set H ¼ 0:5 and c ¼ 2 in (31), and we use the fact that, in the case of
the matrix AG þ 1

2 I it results kAG þ 1
2 IkF ¼ jEj þ 1

2 n where jEj is the number
of edges in the graph, we obtain the following estimate of the threshold
value for the penalty parameter

e <
1

48
ffiffiffi
n
p
ð2jEj þ 1Þ :

5.3. BENCHMARK RESULTS AND COMPARISON

As a benchmark, we use a set of 64 graph obtained from the DIMACS
challenge [17]. Each problem has been solved starting with a randomly
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generated point x0 with kx0k ¼ 1. We perform 150 random runs. In Tables
1 and 2 we report the best, average and worst results obtained in terms of
cardinality of the clique, and average and worst results in terms cpu time.
In the tables, the entries that correspond to the best known result for a
given graph are in bold face.
We consider a comparison with the results presented in [8], obtained

with 10 random runs. There two different heuristics (h1, h21) have been
presented based on a semidefinite program where the matrix is restricted to
be respectively rank-one and rank-two. These semidefinite programs are
equivalent to nonlinear continuous optimization problems that have been
solved with an augmented Lagrangian approach. Actually in the paper also
a third heuristic (h25) based on the two-rank formulation is presented,
which outperforms both h1 and h21. The heuristic h25 uses a rule to
escape from canonical solutions, and since we did not implement any rule

Table 1. Best, average, worst results over 150 random runs

Graph n Max Average Min Time average Time max

brock200_1 200 20 15.91 13 0.91 0.81

brock200_2 200 10 8.073 6 0.94 0.84

brock200_3 200 13 10.36 8 0.99 1.18

brock200_4 200 15 12.09 10 0.97 1.32

brock400_1 400 24 18.67 17 9.44 9.72

brock400_2 400 22 15.91 16 9.44 9.33

brock400_3 200 21 18.64 15 9.01 9.36

brock400_4 200 23 18.65 16 9.04 9.16

brock800_1 800 19 15.14 13 58.45 57.05

brock800_2 800 18 15.31 13 58.28 72.63

brock800_3 800 18 15.08 12 59.07 58.06

brock800_4 800 18 15.01 13 59.38 66.48

c-fat200-1 200 12 11.69 10 0.34 0.38

c-fat200-2 200 24 22.25 22 0.44 0.43

c-fat200-5 200 58 57.36 55 0.57 0.53

c-fat500-1 500 14 13.33 12 4.55 4.86

c-fat500-10 200 126 12.49 122 12.97 14.23

c-fat500-2 500 26 25.52 24 5.57 5.07

c-fat500-5 500 64 62.57 60 8.41 7.60

hamming6-2 64 32 23.53 16 0.06 0.07

hamming6-4 64 4 39.06 2 0.06 0.10

hamming8-2 256 128 84.01 60 2.28 2.38

hamming8-4 256 16 11.50 6 2.58 2.92

hamming10-2 1024 453 300.4 245 358.75 326.86

hamming10-4 1024 34 30.05 20 291.60 246.68

johnson8-2-4 28 4 4 4 0.01 0.02

johnson8-4-4 70 14 10.87 7 0.07 0.07

johnson16-2-4 120 8 7.993 7 0.07 0.07

johnson32-2-4 496 16 16 16 21.89 23.44

keller4 171 10 7.7 7 0.75 0.91

keller5 776 19 16.43 15 50.63 53.27
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of this type, we do not compare with it. We also include comparison with
the heuristics LDR and PBH proposed in [21].
The c-fat and Johnson graph categories are not reported because all the

algorithms return the maximum clique. The same happens for most of the
Hamming graphs and for Mann_a9 so that we report only the problems
where a different behavior appears. We do not compare on the two largest
problems in the DIMACS collection (Keller6 and Mann_a81), because
results for these two problems are not reported for most of the other heu-
ristics. BQP finds cliques of size 36 and 1080, respectively, in these
instances, which have clique numbers of at least 59 (best known solution),
and 1100 (certified), respectively.
In Table 3 we report the number of wins, ties and defeats of PQB with

respect to each heuristic h1, h21, LDR and PBH, in terms of the best value

Table 2. Best, average, worst results over 150 random runs

Graph n Max Average Min Time average Time max

MANN_a9 45 16 14.91 13 0.02 0.02

MANN_a27 378 119 117.4 117 4.16 4.86

MANN_a45 1035 330 330 330 4.81 4.81

P_hat300-1 300 8 6.367 5 1.88 1.80

P_hat300-2 300 25 21.37 18 1.82 2.45

P_hat300-3 300 33 29.99 26 2.21 2.27

P_hat500-1 500 9 7.273 6 10.14 6.70

P_hat500-2 500 34 30.37 25 9.64 11.01

P_hat500-3 500 48 43.69 39 10.50 12.36

P_hat700-1 700 9 7.42 6 25.40 28.92

P_hat700-2 700 43 37.94 33 27.31 26.82

P_hat700-3 700 60 54.54 47 33.00 27.50

P_hat1000-1 1000 10 7.92 7 63.31 49.29

P_hat1000-2 1000 45 39.83 35 64.07 43.87

P_hat1000-3 1000 63 57.17 52 76.38 85.57

P_hat1500-1 1500 10 8.467 7 186.97 235.89

P_hat1500-2 1500 62 55.63 49 183.58 199.47

P_hat1500-3 1500 91 80.17 73 191.62 179.33

San200_0.7_1 200 17 15.02 12 1.03 1.17

San200_0.7_2 200 12 12 12 0.94 0.91

San200_0.9_1 200 46 45.05 45 0.80 1.03

San200_0.9_2 200 47 35.80 28 0.83 0.71

San200_0.9_3 200 34 30.03 25 0.87 1.02

San400_0.5_1 400 7 6.987 6 10.36 9.23

San400_0.7_1 400 20 20 20 9.72 13.25

San400_0.7_2 400 16 15.01 15 10.35 12.62

San400_0.7_3 400 12 12 12 10.87 10.99

San400_0.9_1 400 69 50.13 39 9.09 10.77

Sanr200_0.7 200 17 13.71 11 0.94 0.95

Sanr200_0.9 200 37 33.56 28 0.84 0.73

Sanr400_0.5 400 12 9.467 8 8.21 9.00

Sanr400_0.7 400 20 15.87 13 9.07 12.23

San1000 1000 8 8.00 8 127.24 137.06
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obtained over the 48 problems where the behavior is different. From Table 3,
we can conclude that our method is comparable to h1, better than LDR, but
worse than h21 and PBH.
The overall results are reported in Tables 4, 5 and 6. In these tables, the

entries corresponding to the best value obtained by the heuristics are in
bold face.
It is worthwhile to remark that many other algorithms for the max-clique

based on continuous formulations have been proposed in the literature; see,
again, [7]. Most of them are designed specifically for the max-clique prob-
lem and use the inherent structure of the problem in a specific way; some of
them incorporate also heuristics to escape from inefficient local solutions
(due to the special structure of the problem, a multitude of these is inherent
to the MCP). By contrast, our algorithm BQP is not specifically designed
for the MCP, but for a generic StQP. Indeed, in the two-step transforma-
tion from the StQP through the formulation as a BQP we never used

Table 3. Cumulative comparison with other continuous heuristics

BQP

Wins Tie Defeats

h1 11 22 15

h21 1 5 42

LDR 40 4 4

PBH 1 9 38

Table 4. Comparison with other continuous heuristics

Graph BQP h1 h21 LDR

PBH

brock200_1 20 20 21 13 20

brock200_2 10 10 11 7 11

brock200_3 13 13 14 10 14

brock200_4 15 15 16 11 16

brock400_1 24 22 24 17 24

brock400_2 22 24 25 17 24

brock400_3 21 24 25 17 24

brock400_4 23 23 24 16 24

brock800_1 19 20 21 13 21

brock800_2 18 20 20 13 20

brock800_3 18 19 21 15 20

brock800_4 18 18 21 16 20

hamming10-2 453 512 512 512 512

hamming10-4 34 40 40 32 32

keller4 10 7 11 7 11

keller5 19 16 24 15 26

MANN_a27 119 118 125 125 125

MANN_a45 330 45 45 340 342
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information about the fact that the matrix is an adjacency matrix of a graph
and most of this structure may be lost. Moreover, as we already mentioned,
BQP is designed to obtain local solutions of the StQP which satisfies the
second order necessary conditions. Of course, this method can be integrated
into a global optimization scheme that incorporates some special heuristics
to escape from inefficient local minimizers. However, this type of heuristic
should be tied to the structure of the problem under study and this remains
to be done yet. Hence comparisons in Table 3 are not completely fair, but
still shed some light on the general performance of the approach proposed.

Table 5. Comparison with other continuous heuristics

Graph BQP h1 h21 LDR PBH

P_hat300-1 8 7 8 6 8

P_hat300-2 25 25 25 16 25

P_hat300-3 33 35 36 21 35

P_hat500-1 9 9 9 6 9

P_hat500-2 34 36 36 26 36

P_hat500-3 48 48 50 30 48

P_hat700-1 9 9 11 5 10

P_hat700-2 43 44 44 20 44

P_hat700-3 60 60 62 29 62

P_hat1000-1 10 9 10 7 10

P_hat1000-2 45 45 46 18 46

P_hat1000-3 63 63 68 31 64

P_hat1500-1 10 10 11 9 12

P_hat1500-2 62 64 65 28 64

P_hat1500-3 91 93 94 43 91

Table 6. Comparison with other continuous heuristics

Graph BQP h1 h21 LDR PBH

San200_0.7_1 17 15 30 16 30

San200_0.7_2 12 12 18 12 17

San200_0.9_1 46 70 70 38 70

San200_0.9_2 47 36 70 30 60

San200_0.9_3 34 44 44 25 44

San400_0.5_1 7 7 9 7 13

San400_0.7_1 20 20 40 20 40

San400_0.7_2 16 15 19 15 30

San400_0.7_3 12 12 18 14 17

San400_0.9_1 69 52 100 45 100

Sanr200_0.7 17 17 18 12 18

San200_0.9 37 41 42 32 41

Sanr400_0.5 12 12 13 10 13

Sanr400_0.7 20 20 21 16 20

San1000 8 8 9 8 15
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